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SUMMARY 
If, in a given solution of the boundary layer equations, the 

position of the wall is varied, then additional solutions of the 
boundary layer equations may be deduced. The  theorem 
considers the nature of such solutions, for the general case of 
time-dependent three-dimensional compressible flow. 

Applications of the theorem arise in several different fields, 
and it is shown that useful quantitative results can often be 
obtained with the minimum of calculation. I n  this paper, chief 
attention is focused on the case of a rotating circular cylinder, 
and explicit formulae are developed for the skin friction, valid 
for sufficiently low rotational speeds. The  important results 
which the theorem gives for slip flow have been noted by previous 
authors, and only a brief discussion is given here, but certain 
extensions to these previous treatments are made. Other 
applications of the theorem are briefly mentioned. 

1.  INTRODUCTION 
The theorem concerns the additional solutions of the boundary layer 

equations that may be deduced from a previously known solution, by 
considering the body surface to be at  x = <(x,y, t )  instead of at z = 0, 
where (x, y )  are orthogonal curvilinear coordinates on the body surface 
and t is the time. For the case of steady two-dimensional incompressible 
flow, the theorem was given by Prandtl (1938), though he does not appear 
to have made any applications of the result. More recently Nonweiler 
(1952) effectively uses a limited form of the theorem for steady two- 
dimensional compressible flow, in a paper concerned with the effect of 
slip in a laminar boundary layer. He introduces the concept of a ‘plane 
of zero-slip’, at a small distance below the actual surface, and applies the 
usual no-slip boundary conditions there. H e  deduces results equivalent 
to those following from the theorem, though his treatment is somewhat 
imprecise. Mangler (1956) has attempted to extend Nonweiler’s work 
to steady three-dimensional flow by employing a three-dimensional form 
of the theorem, but the boundary layer equations he uses are inadequate, 
as all curvature terms are omitted. 
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Jn this paper the theorem is proved for the general case of time-dependent 
three-dimensional compressible flow. The  form of the new surface 
z = 5(x,y, t )  is shown to be arbitrary, with the proviso that 5 shall not 
vary so rapidly that extra curvature terms have to be included in the 
boundary layer equations, and the conditions for.this to hold are investigated. 
It might be anticipated that difficulties would arise in attempts to apply 
the theorem when 5 < 0, since in this case the new solution is not defined 
for 5 < x < 0. However, a given original solution of the boundary layer 
equations can be extended for a certain distance across the surface x = 0 
by analytic continuation, and it will be found that in practical applications 
5 is only a small fraction of the boundary layer thickness. Numerical 
results will be obtained in terms of values and derivatives of the dependent 
variables at x = 0 in the original solution, and thus the theorem will be of 
use for both positive and negative values of 5. 

Fields of application of the theorem include flow past a rotating cylinder, 
slip flow, flow over a body covered in whole or part by a moving belt or a 
liquid film, and flow over a body of liquid. Some consideration is given 
to all these cases in this paper. 

2. THE THEOREM 
The  boundary layer equations for unsteady compressible three- 

dimensional laminar flow can be written as follows, in terms of orthogonal 
curvilinear coordinates (x,y, x), where x = 0 is the body surface: 

1 D p  1 a(h,u) 1 2(hlz) aw 1 
- -+---  -t-- + -  = o ,  ~t h,h, ax h,h, ay aZ 

Here h,dx and h2dy are elements of length in the coordinate directions, 
h, and h, being functions of x and y ,  (u, z, w) are the velocity components, 
p and k are the coefficients of viscosity and thermal conductivity, and t is 
the time. The  pressure p ,  the density p and the temperature T are also 
connected by the equation of state. The  pressure does not vary across 
the boundary layer, and is known from conditions in the external flow. 

Suppose one solution of these equations, Solution 1, is available, where 
the variables take values (u,, vl, wl, p l ,  T I )  which are known functions of 
( L ~ , ~ * ,  I, t ) .  'I'hey will satisfy certain conditions at the surface z = 0, and 
at the outer edge of the boundary layer, which may be considered to be 
at x = as  far as the boundary layer equations are concerned, all except 
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Consider now a second set of expressions wI will take prescribed values. 
(u,, v,, w,, p 2 ,  T,) with the properties 

1 uz(x,y, z ,  t )  = u,(x,y, x+  i, t ) ,  
v2(x,y, x ,  t )  = vl(x,Y, x + 5, t)? 
p&, y ,  z ,  t )  = P&, Y , z + 5 ,% 
T,(x,y, x, t )  = 7',(x,y, z + 5, t ) ,  

I 
(2) i 

where 5 = i (x ,y , t ) .  Our theorem consists of the assertion that the 
quantities (2) also satisfy the equations (l), and so give a second solution, 
Solution 2, of the boundary layer equations. At the outer edge of the 
boundary layer, Solution 2 will satisfy the same conditions as Solution 1. 
The value of w will be different, but this is not ;1 quantity which can be 
prescribed in a boundary layer problem. At the surface, z = 0, Solution 2 
will satisfy quite different conditions from Solution 1, and it remains to 
be investigated whether they will be appropriate in any practical application. 

The general form of the expressions (2) is in accord with the concept, 
mentioned in 9 1, of taking a new surface at z = 5 in Solution 1. The  extra 
contribution -ailat to w2 results from the relative motion of the old and 
new boundaries, and the contribution - (u,/h,)a(/dx - (vl/hz)a5/ay arises 
since u1 and zl, have components normal to the new surface. In  boundary 
layer flow, w is small compared with u and z', so there are no corresponding 
additions to u, and v2. 

However, the truth of the theorem is most concisely and conclusively 
demonstrated by direct substitution in the boundary layer equations (1). 
From equations (Z), 
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It is thus clear that equations (1) and the equation of state are satisfied, 
since p ,  hl and h, are not affected, and so the theorem is proved. 

We should expect there to be some limitations on 5 for the theorem 
to hold. I n  boundary layer flow, Pu/ax2 is O(S-,), and no other second 
derivative of 21 exceeds 0(2-l), where 6 is the thickness of the boundary 
layer, and the dimensions of the body are considered to be O(1). This 
must continue to apply, or extra viscous terms will have to be included 
in equations (1). Now i32u,/W has terms 

and hence we must have 

Consideration of other derivatives leads to similar conclusions. Clearly 
5 = O(S), or Solution 2 will lie entirely outside the original boundary 
layer. We see, therefore, that the typical distance for a change in 5 must 
not be less than O(61’z), i.e. a distance intermediate between the length of 
the body and the thickness of the boundary layer. 

The  direct physical interpretation of the theorem, as given by 
equations (2), is that a given solution may be displaced through a 
distance - 5  in the x-direction, without affecting its validity. This is 
not exactly the same as our previous idea of taking the body surface to 
be at z = 5 instead of at z = 0, as in the latter case a change of coordinate 
system i s  involved, the new coordinates being along and perpendicular to 
the new boundary. However, it would seem that on the boundary layer 
approximation the two physical processes are indistinguishable. If the 
change of coordinate system is not to affect the values given in equations (2), 
and if the curvature of the boundary is to be such that the solution is 
applicable to bodies of small or zero surface curvature, it can readily be 
shown that [ must satisfy the conditions of equation (6), precisely as before, 
This  gives further confirmation of the equivalence of the two physical 
interpretations of the theorem. 

3. ROTATING CYLINDER 

Practical applications of the theorem can be found when < is a small 
fraction of the boundary layer thickness 6. For the simple case of steady 
two-dimensional incompressible flow, we may take h, = 1, and equations (2) 
reduce to 

d5 
w,(x, 2) = wl(x, .z + 6) - u,(x, + c) - dx ’ u2(x, z )  = ul(x, 2 + i), (7) 

where 5 = ((x). 
equivalent to 

In ternis of the stream function +, equations (7) arc 

9% .) = $1(% + i), (8) 
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... alG1 a2* 
*2 = *I+ i,, + 1 5 2 7 j $  -I- 

= 4I+&,+W7$ I ..‘, i3U 

324, P U  

a2 a22 
242 = u,+[- + i t 2 2  +..., 

au2 - k, a2ul 
- - +<- +.... 

At z = 0, Solution 1 will normally satisfy #, = u1 = 0. Also 

where T is the skin-friction, and 

(11) 
1 dP pU dU = - -  = -  _ _  (2) 2=0 P dx p dx ’ 

from the boundary layer equations, where U ( x )  is the velocity outside the 
boundary layer. ’Thus if is negligible compared with unity, the 
conditions satisfied by Solution 2 at z = 0 are 

lfi2 = 0, u2 = <Tl/p, r2 = -rl - <p U ( d  U / d x ) .  (12) 
Consider the flow past a circular cylinder, rotating so that the surface 

has a small tangential velocity a. If Solution 1 gives the flow with zero 
velocity at the cylinder surface, then by (12) we obtain the required 
Solution 2 by choosing 

< = apbl, (13) 

and hence appU d U  
T2 = 71- - - 

7, dx ‘ 
Thus if T~ has been determined, perhaps by means of a Khrmhn-Pohlhausen 
calculation, T~ is given at once. It should be noted that the external flow 
U(x) ,  used in (14) and to obtain T ~ ,  must be that round the cylinder when 
it is rotating, and the determination of this flow is not a purely boundary 
layer problem. The  condition for (12) to hold, that </S is small, implies 
that a /U must be small. This is clear physically, since the new surface 
in the Solution 1 flow must be at the point at which u1 = a. As discussed 
in $1, equation (14) applies whether a is positive or negative. 

Separation and stagnation points 
According to equation (13), < becomes large when T~ becomes small, 

and so our solution ceases to be valid, whatever the value of a. This will 
occur in the region of the front stagnation point and at separation. The  
question of what constitutes separation on a rotating cylinder is one of 
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some complexity, which we shall not embark on here. 
according to (14), T~ becomes infinite when T~ = 0. 
the terms in c2 in (9), the boundary condition on a1 is satisfied if 

and with < chosen to satisfy (15) we obtain 

This  expression for T~ is equivalent to (14) when T~ is not small, but does 
not become large near separation. If a is small, 5 is small for all values 
of T ~ ,  and the value of $2 at z = 0 never exceeds O ( U / U ) ~ ’ ~ .  Thus (16) is 
applicable even near the separation point in Solution 1. 

Consider the cylinder to be rotating so that the upper surface is moving 
in the same direction as the stream. Then a is positive on the upper surface 
and, according to equation (16), T~ has a finite value when T~ = 0 (since 
dU/dx is negative here). The  validity of Solution 1 ceases at this point, 
and so no further deduction of Solution 2 can be made, but presumably 
T~ falls steadily to zero as x increases further. On the lower surface a is 
negative, if x is still measured in the flow direction, and T~ = 0 when 
T: = 2appU(dU/dx). The  solution cannot be extended further by use of 
the theorem, as there is no point in Solution 1, or its continuation below 
,z = 0, which could be taken as the new position of the surface. In  any 
case, it is natural to consider T~ to be zero beyond this point. 

Near the front stagnation point, where U < a, there is no point in the 
boundary layer at which zil = a, and so the theorem must cease to apply. 
However, the value of T~ given by equation (14) has a finite limit at the 
stagnation point, and we can show that this value is correct. Consider 
the linear approximation to (9), 

If <(&L~ /&)~=~  = a, the boundary conditions at z = 0 are satisfied exactly, 
and the boundary layer equations are satisfied if terms quadratic in [ are 
neglected. ‘Thus 

We note that, 
However, if we retain 

ap = 5 ~ ~ -  ;c2pU(dU/dx), (15) 

(16) 7% L- 17: - 2appU(~ iU/dx) )~ /~ .  

</J2 = +,+ 5u1, ua = ti,+ i(au,/az). (17) 

In  this form it is clear that, in the boundary layer equations, the terms in a2 
remain finite as x+O, and will be negligible if a is small, and so the 
equations are adequately satisfied. Equation (14) follows as before, and 
so is valid even in the neighbourhood of the stagnation point. Incidentally, 
Rott (1956) and Glauert (1956) have shown that, for a linear external 
velocity distribution U = cx, equation (1 8) gives the exact flow for a surface 
velocity a of any magnitude. 

Torque on cylinder 
We now attempt to make a quantitative estimate of the torque G on a 

slowly rotating cylinder. The  first thing to be decided is the form of the 
velocity distribution U(x)  at the edge of the boundary layer. Experiments 
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by Reid and by Betz quoted by Goldstein (1938, p. 546) show that no 
significant lift is observed if a < BU,, where U, is the velocity of the 
oncoming stream, and so we shall assume that U(x)  remains the same as 
when the cylinder is not rotating. I n  accordance with the values given 
by Hiemenz (Goldstein 1938, p. l50), we choose 

where 0 is the angular coordinate round the cylinder. For a non-rotating 
cylinder, the skin-friction is now given by the series due to Howarth (1935), 
with additional coefficients calculated by Ulrich (1949), as 

l J / l J o  = 1.81388- 0*270S03- 0*0470805, ('9) 

R1I2 Zj = 4.2588 - 1.493f13 - 0.2878j + 0.01908' - 0*00040', (20) PUG 
where the Reynolds number R = U,d/v, d being the cylinder diameter 
and v the kinematic viscosity. 

On the basis of (19) and (20), the value of ( T ~  - 71)/a as given by equation 
(14) can be tabulated as a function of 0, and the results are shown in figure 1. 
Over the front part of the cylinder, the skin-friction produces a decelerating 
torque, tending to  reduce the rotation, but beyond the velocity maximum 
there is an accelerating contribution to Gin, which according to  (14) is 
logarithmically infinite. There is thus a tendency to autorotation. 

Figure 1. Increment of skin-friction ( T ~  - I ~ )  on a circular cylinder rotating with surface 
velocity ( I  in a stream U,. at an angle 8 from the front of the cylinder. 
--__ a/Uo very small (equation (14)), -__ * --- . aIU0 = 0.025, 
- -_ -- a'U, = 0.1, x limit of validity. 

However, this result is valid only for vanishingly small a ;  for larger 
values of a, equation (16) must be used in place of equation (14), in the 
separation region. The  values given by (16) cannot be represented by a 
single curve for all values of a. I n  figure 2 the values of 72 are shown 
directly for a /U,  = 0.025 and a/Uo = 0.1. Here. equation (14) has been 
used to obtain the values up to the velocity maximum (where t2 = TI), and 
equation (16) from there on. The corresponding values of ( T ~  - T ~ ) / U  are 
also shown in figure 1. 
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We now calculate the torque by integrating the skin-friction over the 

cylinder, as far as the zero of T~ on the lower surface and the zero of r1 on 
the upper. As discussed above, these are the limits of validity of our solution. 
We obtain the following results. 

a G - : 0.025, R':2- = -0*0088. 
"0 

a <; - = 0.1, 
U" 

pUid2 When 

When 

The negative sign indicates that the torque G acts to decrease the rotation, 

R4" - = - 0.0475. 
p U,2 d2 J 

Certain sources of error in the values of equation (21) may be noted. On 
the upper surface, r2 must fall to zero over a certain distance beyond the 
point at which T~ = 0, and this will give an additional accelerating torque. 
However, it would appear from figure 2 that the final values Of  T2 are probably 
overestimates, due to the increasing inaccuracy of our approximate solution, 
and also there may be a significant torque over the separated region at the 
rear of the cylinder. These two effects will produce an additional 
deceleration. Further errors will have arisen from our choice of a 
symmetrical velocity distribution, and in sum there seems little justification 
for modifying the values of equation (21), though no great confidence can 
be placed in their accuracy. 

2 5  

20 

1 5  

1 0  

0 5  

0 

Figure 2. Skin friction 7% on a circular cylinder rotating with surface velocity n in 
a stream U,,, at an angle 0 from the front of the cylinder. 

--_ a/Uo = 0 (no rotation); -- . -- . a/U0 = 0.025 ; 
a lu ,  = 0.1. -- -- -- 

Finally, a rough calculation shows that if a/U, is less than 0.001, G is 
positive and so tends to produce autorotation. On the basis of this estimate, 
a cylinder falling freely with velocity U,, should rotate, with a surface 
velocity 0.001 U,,. 

For a cylinder making rotational oscillations with frequency Q, our 
solution will continue to apply provided a</& is not too large, so that, 
from equation (2), the boundary condition on w2 is adequately satisfied. 
It is easily shown that this requires that Qd/U, shall be small compared 
with unity. For a cylinder making translational oscillations (Glauert S956), 
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the torque is expressible as a power series in Qd/U,,. No doubt the same 
is true in the present case, the theorem enabling us to estimate the first 
term of the series. 

4. SLIP FLOW 

For the high speed flow of a gas of low density, the boundary conditions 
at the surface may be modified to permit a slip velocity and a temperature 
jump. In the notation of $2, the boundary conditions at x = 0 for three- 
dimensional flow are 

where T ,  is the temperature of the solid surface and L and L" are lengths 
of the order of the molecular mean free path. The basis of these conditions is 
discussed by Nonweiler (1952), who gives an extensive treatment of the 
two-dimensional case, using what is in effect a form of our theorem for small 
5. We shall show briefly how the theorem may be applied in the general 
three-dimensional case, as was attempted by Mangler (1956), who, however, 
omitted all curvature terms from the boundary layer equations. 

is negligible 
and the flow is steady, 

Use of Taylor's theorem in equation (2) shows that, if 

u2 = u, + 5 au,/az, 1 

Solution 1 will normally satisfy u1 = uul = w1 = 0 at z = 0. The conditions 
(22) on u, v and w will then be satisfied by choosing 

since, from the first of equations (l), aw,/ax = 0 when x = 0. 
temperature, it follows from (22), (23) and (24) that, at z = 0, 

The following expressions for T~ and T ~ ,  the components of the skin-friction, 
and q = (ki3T/a~), ,~,  the heat-transfer rate at the surface, are now readily 
obtained with the use of Taylor's theorem and the values of equations (1) 

5 = L, (24) 
For the 

TTq = T , + ( L -  L")aTi/az. (25) 

at x = 0. 

F.M. G 



98 M .  B. Glauert 

Thus, corresponding to a known Solution 1, we can find a Solution 2 
applicable to slip flow, the variation of temperature and heat transfer over 
the surface being given by equations (25) and (27). The extra contributions 
to the skin-friction are given by equations (26), without even requiring a 
knowledge of the Solution 1 values. There are no difficulties either at a 
rounded nose or at separation, since I,/8 remains small. At a sharp leading 
edge the solution ceases to be valid, but so do the boundary layer equations 
themselves. 

For two-dimensional flow, all these results were obtained by Nonweiler, 
although his expression for w2 was incorrect. On the assumption that the 
flow is incompressible, Lin & Schaaf (1951) gave the results for the special 
cases of flow over a flat plate and near the stagnation point on a body of 
revolution. 

Difficulties occur in practice. If the wall temperature is to be constant, 
or the rate of heat transfer is to be zero, it is insufficient to employ a Solution 1 
with the same property. As shown by (25) and (27), the required Solution 1 
must satisfy a slightly modified temperature condition, and hence (T& and 
(7J1 will differ from their values in the corresponding no-slip case by terms 
proportional to L. Nonweiler makes several attempts to estimate the 
effects of such modifications. 

5 .  FURTHER APPLICATIONS 

Brief consideration will now be given to certain other classes of problem 
in which the theorem might have useful applications. In  all cases the 
velocity distribution outside the boundary layer must be specified, and this 
may be difficult in some instances. 

For the flow past a body covered in whole or part by a moving belt, 
the theorem is applicable if the belt velocity is small compared with the 
stream velocity, the treatment following that of $ 3 .  As is clear from 
equation (23) the theorem gives a solution only if the belt moves in the 
same direction as the fluid near the surface, so this application is effectively 
restricted to two-dimensional motions. If the belt extends over only part 
of the body, difficulties arise when considering the flow near its ends, 
as 5 would have to change more rapidly than permitted by the theorem. 

For the flow past a body covered with a liquid film, Solution 1 would be 
computed assuming the film to be frozen. The skin-friction induces a 
motion in the film, and the effect of this motion on the flow over the body 
could be found from Solution 2. Since the liquid moves in the direction 
of the stress, the theorem will be applicable for a general three-dimensional 
body. 

For the flow past a body of liquid, Solution 1 would be calculated 
assuming the body to be solid. If the internal motion of the liquid could 
then be estimated, its effect on the air boundary layer would be given by 
the theorem. Here the applications will usually be 'confined to two- 
dimensional or axi-symmetric motions. 
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